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An algorithm which employs a combination of asymptotic and numerical methods to solve 
a Sturn-Liouville problem arising from a separable acoustic wave equation is presented. 
Error criteria for switching between methods are derived. Implementation requires a decom- 
position of the index of refraction profile into separable subprofiles. Computing times and 
accuracies are compared with conventional methods. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Solving th Helmholtz equation by strictly using only numerical methods becomes 
increasingly difficult and time-consuming as the frequency of the wave increases. In 
representing broadband and pulsed wave propagation by frequency integrals the 
problem is compounded since the Helmholtz equation must be solved at a large 
enough number of frequencies to accurately represent the time-dependent pressure 
field. 

If the Helmholtz equation is separable and the frequencies of interest are not too 
low, it is possible to take advantage of high-frequency asymptotics to alleviate some 
of the computational burden. The primary difficulty encountered in the implemen- 
tation of the asymptotics is that of obtaining approximations which are uniformly 
valid over the domain of interest. For simple sound speed profiles involving only 
one or two turning points the method of matched asymptotic expansions can 
provide uniformly valid analytic approximations [ 11. However, if there are more 
than two turning points present, as occurs in sound speed profiles with multiple 
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channels, strict use of asymptotics becomes prohibitively complicated. Furthermore, 
sound speed profiles or indices of refraction are often represented by linear inter- 
polation between data points. Since a derivative of the profile at a turning point is 
required for the turning point analysis, the issue is further complicated when turn- 
ing points are near sound speed data points. 

In this paper we describe a solution scheme which combines both numerical and 
asymptotic methods to produce uniformly valid approximations. The basic strategy 
is simple: use asymptotic expressions whenever they are valid approximations. This 
results in a reasonably accurate code with run times in excess of one order of 
magnitude faster than conventional codes and can in addition handle extremely 
high frequencies. These features make it particularly attractive for broadband and 
pulsed propagation problems. This work is a report on the general theory which 
provides a significant extension of the approach used in Ref.[2] to complex sound 
speed profiles and varying medium densities. 

In Section 2 we discuss the problem to be solved. In Section 3 are presented error 
criteria for deciding where to switch from asymptotics to numerics and vice versa. 
In Section 4 we discuss the decomposition of index of refraction (IOR) profiles into 
subprofiles amenable to combined asymptotic and numerical treatment. In Sec- 
tion 5 examples are presented and limitations of the model are discussed. 

2. STATEMENTOF THE PROBLEM 

The acoustic pressure produced by a point source with arbitrary time t depen- 
dence has the Fourier representation 

PP, z, t) = & j- P(r, z, 0) F(o) e-iw’do (1) 
02 

where w is angular frequency, F(o) is the Fourier transform of the source 
waveform, and P is the frequency response of the channel. For a vertically stratified 
channel of depth h with rigid bottom and pressure release surface, P is obtained 
from the separable Helmholtz equation in cylindrical coordinates 

a? 1 ap 
ar'+x + 

a2p 1 dp ap 
- ----dz+k2(Z) P= -6(r) qz-z,)/2w a2 (2) 

along with boundary conditions 

$r, -h)=P(r,O)=O. (3) 

In Eq. (2), r = receiver range, z = receiver depth, z. = source depth, p(z) = medium 
density, c(z) = medium sound speed, n(z) = c(O)/c(z) = index of refraction, and 
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k = o/c(O) = wave number. The solution to Eqs. (2) and (3) in the normal mode 
representation [2] is 

where Ho(‘) is the Hankel function of order zero of the first kind and the eigen- 
values a, and eigenfunctions $,,, are solutions of the Sturm-Liouville problem 

(p-‘(z) I’)‘+ k’p-‘(z)(n2(z)-a’) #=O (5) 

with boundary conditions 

fj(0) = (b( -h) = 0. (6) 

Numerical evaluation of Eq. (1) requires replacing the infinite limits with finite 
limits corresponding to the bandwidth of the signal, approximating the resulting 
integral with a sum and evaluating the sum for a discrete set of values of a. 
Accuracy requirements generally require values of P, and hence solutions to 
Eqs. (5) and (6), at a large number of frequency grid points. Common numerical 
methods for solving Eqs. (5) and (6) are shooting methods [3], local coefficient 
approximation methods [4], finite elements [5], and finite difference methods with 
refinements [6]. In all these methods grid resolution must increase with frequency 
in order to achieve satisfactory accuracy. In this paper we instead use high-fre- 
quency asymptotics, the WKB method, to represent solutions of Eqs. (5) and (6) 
wherever possible. 

The normal mode representation in (4) is possible since the variables for the 
problem (2)-(3) separate due to the fact that the environment is range-independent. 
For range-dependent environments, i.e., where the depth or sound speed varies with 
range, our method will not work unless, for example, an adiabatic approximation 
for slowly changing range dependence is used [7] or the range interval is divided 
into segments with vertical boundaries of distributed sources where the solution 
within each segment is computed in a range-independent manner [8]. A natural 
approach to solving the Helmholtz equation in range-dependent environments is by 
finite element or finite difference methods. These approaches have several merits but 
high-frequency and multiple-frequency runs still require considerable storage and 
time. In order to limit the area of computation by these methods artificial absorbing 
boundary conditions have been developed which minimize undesirable, extraneous 
wall reflections [g-11]. The radiation condition at infinity is accounted for in (4) 
by the proper selection of the eigenfunction expansion. We finally remark that 
there is usually a very limited amount of data available to characterize well range- 
dependent environments. For a comprehensive survey of range-independent and 
range-dependent numerical models of underwater acoustic propagation, see [a]. 
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FIG. 1. Illustration of decomposition of index of refraction profile near a mode turning point. 

3. DETERMINING ASYMPTOTIC AND NUMERICAL REGIONS 

Consider the graph in Fig. 1 of a portion of the function w = n(z) and the con- 
stant function w = a. In region I where q =n2 -a2 >O, the physical optics 113) 
approximation to the general solution of Eq. (5) is 

4 I,WKB(Z)NA1~f,~KB(Z)+A2~f~~\?KB(Z) (7) 

=pl’iq”‘[R,exp(-i~~~q1~‘(r)dr)+d2exp(i~~~q1~’(s)dr)], q>O 

and in region III where I = u2 - n2 > 0, the physical optics approximation to the 
general solution of Eq. (5) is 

4 III,WKB (z) - Cl 4t:f*w,, (z) + C24&wce (z) (8) 

=p’“r-1”[C,exp(-k~~~r1f2(s)ds)+C2exp(k~~~rl”(s)*)], r>O. 

As z approaches the right turning point z =z,, the error between these WKB 
approximations and the exact solution approaches co since q(z), r(z) + 0 as z + z,. 
Thus, we need to determine the size of region II = (z; , z: ) outside of which the dif- 
ference between the WKB approximations and the exact solutions of Eq. (5) 
remains less than some prescribed error bound. In region I we write Eq. (5) in the 
form 

(P-‘~‘)‘+P-l(k2q+hl)~=p-‘h,~, q>o (9) 

where 
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and in region III we write Eq. (5) in the form 

(P-l~‘)‘+P-l(k2q+h3)~=P-lhj~, q<o (11) 

where 

(12) 

Since bI,WKB satisfies Eq. (9) exactly when the right-hand side is set to 0, the 
variation of parameters formula in differential equations allows us to write Eq. (9) 
in the integral form 

l”‘(z)=~~(liKB+k-lpl’2(Z)q--1’4(z)Sir p-“2(t)q--1’4(f) 

xsin[X,~qll(‘)h.]h~(1)4”1(1)4 (13) 

j= 1,2, where we have denoted the exact solution by #j)(z). Similarly, Eq. (11) 
may be written as 

P’(z) = ~&v,, +k-‘p”2(z) r-‘/4(z) 1: p-“2(t) r-“4(t) 

~sinh[~i.~‘/‘(~)~~],~(~)~~~)(~)~~, (14) 

j= 1, 2. Usin g th e method of successive approximations [ 141 on Eqs. (13) and (14) 
we obtain the error bounds 

lq5(j)(z)-#&KB(z)I <p’/2(z) q-1~4(z)[e”1(z~-zuk- 11, z c z; (15) 

where 

u1= tEyazx_, lP2(Q h (f)l 
1 , 

(16) 

and 

l4”‘(z) - &&qc, (z)l < p112(z) r-“4(z) e(-lvk s ” r”‘(s) ds 
ZT 

where 

* Ce WM--;)/k -11, z > z,+ (17) 

(18) 
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F(z) = sinh k Jt r’/*(d) ds . 
=, 1 (19) 

One of the mysteries about high-frequency asymptotics is why they work so well 
even when the frequency is not high. From the terms in U,, it is clear that if the 
product of density and sound speed gradients and curvatures within the channel 
width are small relative to the frequency and z; is not too near z,, then the bound 
in Eq. (15) will be small. In water p is essentially constant and sound speed rarely 
varies more than a few percent over the water column. In sediment layers sound 
speed gradients are larger and the errors incurred are therefore larger than in the 
water column. Fortunately, attenuation effects in sediment layers are higher also so 
these errors are not serious. If z,? -z, is sufficiently large and z is not significantly 
larger than z,? then the absolute error between d”‘(z) and &nwKB(~) will be small 
but not the relative error. The situation is reversed for C@“(Z) and @III,wKB(~). 

To find the width of region II, assume that the maximum in Eq. (16) occurs when 
t is nearest the turning point, i.e., at t = z~ . From (15) then we obtain 

lp’(z,-qy&&,l ~Hrq’(z,)12/kCq(z,)1’1’4+ ... (20) 

where H is a measure of channel width. Requiring the right-hand side of (17) to be 
less than some prescribed error bound E, yields z~. For z: we use the simpler 
criterion 

k 5” r”*(s) ds 2 ET’ (21) 
zr 

where a2 is a prescribed error bound. 
In region II Eq. (5) is very easy to solve numerically since lk*p - ‘(n* - a’)1 G 1. 

The following matching conditions are used at the transition point z7 

4 I,WKB (z; I= 411 (z; 1 (22) 

P - ‘k- 1 c4,WKB (z; ) = P - Yzr- ) & (z, 1 (23) 

and similarly at z = z,’ . We remark that three terms are carried in the WKB 
expressions for the purposes of computing derivatives in order to keep the errors 
proportional to k - ’ . 

4. PROFILE DECOMPOSITION AND CLASSIFICATION 

In order to implement the WKB solutions for the total IOR profile we decom- 
pose the profile into subprofiles which possess one or two turning points with the 
possible presence of at most two discontinuities in the interiors of the subprofiles. 
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Associated with each subprofile is an ordered pair of integers (ii,, i,?) were j refers 
to thejth profile. The first integer (iii) refers to the type of intersection made by the 
separation constant, a, and the profile n(z). The second integer (iJ refers to the 
number of profile discontinuities between the intersection points. Also associated 
with each subprofile is a pair of depths (zj,, z,~) which bracket the depth data 
points defining n(z) for that subprolile. In addition it is also necessary to record the 
values of transition levels of the separation constant, a, which form the boundaries 
between subproliles in the vertical direction. The upper limit is denoted by air and 
the lower limit is denoted by uie. Each subprofile has associated with it an eigen- 
value condition determined by the types of intersection that the separation con- 
stant, a, makes with n(z). The possible intersection types are surface (S), turning 
point (TP), discontinuity (D), and bottom (B). Since the vertical boundaries are 
determined by a change in the types of intersection, the eigenvalue condition is not 
valid throughout the interval [ujB, aj,] but only on a subinterval 
[fijB, ii,,] c [ai,, ujT] where ujB < GjB and ZjT < ujT. ZjB and LijT are determined by 
application of the error criteria discussed in Section 3. The vertical intervals 
(ujB, GjB) and (L?~?,,, ujT) are called criteria1 regions and special eigenvalue conditions 
are associated with each critical region. The critical regions arise because a turning 
point may get close to a surface or bottom boundary, a discontinuity, or a local 
sound speed maximum (tunnel or top of a barrier). If 5jB > Gj,, then the entire sub- 
profile becomes a critical region. 

Figure 2 illustrates a decomposition for a sample IOR profile. Subprofiles 1 and 3 
are TP, S types, subprofile 2 is a TP, TP type, subprofile 4 is a D, S type, sub- 
profile 5 is a TP, D, S type, and subprofile 6 is a B, S type. The eigenvalue condition 
for the noncritical region of subprofile 2 is [7] 

I I 
1 I 1 I 6 6 1 1 tz tz 

L = -h L = -h =D zi =D zi Zf Zf z=o z=o 
Depth Depth 

(24) 

FIG. 2. Illustration of decomposition of index of refraction profile into subprofiles. 
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where z&u) and z*,(a) are the abscissas of the left and right turning points, respec- 
tively. If a, is an eigenvalue the corresponding asymptotic representation of the 
eigenfunction and squared norm are 

4, (z) N sin 

and 

respectively. The eigenvalue condition for the noncritical region of subprofile 5 is 
more complicated. The general WKB solution valid for z < z,, and q(z) > 0 which is 
the continuation of the WKB solution that exponentially decays into the bottom 
(and therefore approximately satislies the bottom boundary condition b’( - h) = 0), 
is 

A@‘)(z,,(u), z; a) = Ap”*(z) q-“4(z) sin 

zs:(u)<z<z,, 

q’/*(s) ds+; , 
1 

(27) 

The general WKB solution valid for zD < z < 0 and q(z) > 0 is 

BqP(z,, z; a) + c@*)(z,, z; a) = p’/*(z) q-‘14(z) ql’*(s) ds +; 1 
II 

(28) 

) z,dzdO. 

Requiring continuity of 4 and p-i@ at z = zD and satisfying the surface boundary 
conditions leads to the problem 

where 

A3.,(~)~,x,=O (29) 

4 x Au) = 

P’M4, 20 ; a) -qqz Lbz,+;a ) - qP)(z,, ZD’ ; a) 

p-‘(z,)~!‘)(z,,(u),z,;u) P-l(z,+)~!“(z,,(u),z,+;u) P-1(z,+)9!2’(z,,(u),z,+;u) 

0 V'M4,O; a) 4"'(zsr(~); 0; 4 1 
(30) 
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and 

A 
x 3x1= 0 B . 

c 

The requirement for nontrivial calculations yields the eigenvalue condition 

det A,,,(a)=O, a E cb?, 4,l. 

(31) 

(32) 

Having found the eigenvalues a, E [a 5B, usT], the asymptotic expression for the 
mode normalization is 

I ’ p-l(s)&(s)ds-;Afl’D 
-h 

=,(a,) b2(4 - 41 -“2ds 

+; [B;+C;] j= [n2(s)-.;]-“2ds. 
ZD 

(33) 

Asymptotic formulas may also be derived for attenuation factors which are devised 
by a perturbative method. The other noncritical regions are handled similarly. 

As an example of how a critical region is handled, consider [a,,, C&I. In this 
case one numerically constructs a solution which satisfies the bottom boundary 
condition at z = -h to the depth z = z: (a) where the WKB solution is valid. Then 
continuity of 4 and p - ‘4’ are applied at z = z: (a), z = zD and satisfying the surface 
boundary condition leads to a 5 x 5 determinantal eigenvalue condition. 

The bottom critical region of subprofiles 2 and 1 is combined with the top critical 
region of subprofile 3 into a tunnel region. The solution to Eq. (5) in the 
neighborhood of the sound speed maximum is then constructed numerically. 
Satisfying boundary conditions and continuity requirements with adjacent WKB 
solutions leads to another eigenvalue condition. 

5. ACCURACY COMPARISONS 

To illustrate both the accuracy and limitations of the uniform asymptotic 
approach, we consider calculation of transmission loss (ten times the logarithm of 
intensity at a given range relative to intensity at one meter) in a deep ocean 
environment. For accuracy comparisons, a numerical code developed by the Naval 
Research Laboratories [ 151, which employs strict numerical techniques, is utilized. 
The environment chosen is illustrated in Fig. 3. The sound speed profile illustrates 
minimum (index of refraction maximum) at the surface and at a depth of 800 m. A 
sound speed maximum (index of refraction minima) occurs at 100 m. The sediment 
velocity profile shows a discontinuity at the water/sediment interface and a strong 
increase in sound speed. In addition, a strong density discontinuity also exists. The 
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Sound speed (misec) 

1501.9 1528.0 

-800 

FIG. 3. Sound speed and index of refraction profile used in comparison. Sediment attenuation = 0.05 
dB/m/kHz. 

sound speed minimum at the surface forms an acoustic duct. Geometrical optics 
(ray theory) would predict that a source in the duct (above 100 m depth) would 
excite waves trapped in the duct. However, LaBianca [16] has shown that at fre- 
quencies below about 300 Hz, diffractive leakage will make the duct acoustically 
insignificant. For our comparison, we use a source and receiver depth of 50 m, and 
a frequency of 100 Hz, selections which will illustrate the importance of diffraction. 

From Eq. (4) the pressure field P is computed from a modal sum whose only 
range dependence arises through the oscillatory complex exponential and the 
attenuation damping. Thus, the range behavior is determined by the eigenvalues a, 
and attenuation a,. To compare these quantities, two more physically meaningful 
quantities are defined, the phase velocity V, and dB loss in 100 km D, : 

Vn = co/an (34) 

and 

D, = 8.6 x 105a,. (35) 

The phase velocity yields physical insight into the vertical extent of the energy 
carried by the mode; the mode is oscillatory for sound speeds less then the phase 
velocity and exponentially damped when sound speed is greater than the phase 
velocity. The quantity D, defines how quickly a given mode is attenuated by water 
or sediment absorption. Table I presents a comparison of phase velocity and 
attenuation for three separate groups of modes: one group with V,, much less then 
the bottom sound speed of 1527.5 m/set (water column refracted), one group with 
V, near the sound speed at the top of the sediment (weak interaction with 
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TABLE I 

Phase Velocity and Attenuation Comparisons between NRL Numeric and 
WKB Asymptotic-Numeric Codes 

Mode No. 

Phase velocities (m/set) Attenuation in 100 km (dB) 

NRL WKB NRL WKB 

28 1502.188 1502.194 0.120 0.120 
29 1502.590 1502.596 0.120 0.120 
30 1502.984 1502.991 0.120 0.120 
31 1503.372 1502.378 0.120 0.120 

94 1529.257 1529.260 1.47 1.40 
95 1529.712 1529.715 1.65 1.60 
96 1530.177 1530.184 1.76 1.76 
97 1530.653 1530.659 1.86 1.85 

187 1603.275 1603.458 16.4 16.3 
188 1604.417 1604.611 14.5 14.5 
189 1605.572 1605.776 13.4 13.4 
190 1606.737 1606.952 12.7 12.7 

sediment), and a third group with a sound speed much higher than that of the top 
of the sediment (strong penetration into the sediment). The attenuation values 
reflect the interaction with the sediment, showing an increase from less than 1 dB 
attenuation from water absorption for the first group and over 10 dB for the 
sediment penetration modes. Attenuation values computed with the WKB code 
agree to a fraction of a dB with those computed by the NRL code. 

The eigenvalue comparison illustrates that the uniform WKB eigenvalues agree 
with the NRL numerically generated values for six to seven decimal places for the 
first two groups. A significantly larger error is noted for the modes that penetrate 
depth into the bottom. This error results from the presence of large vertical sound 
speed gradients in the sediment. From Eq. (lo), (12), and (15)-(19), the error 
increases as the index of refraction (equivalently sound speed) gradient grows. In 
the sediment, these gradients are two orders of magnitude larger than those encoun- 
tered in the water column. However, Table I indicates that attenuation values are 
accurate, and a comparison of mode amplitudes (not presented here) also indicates 
similar accuracy. Further, it is not the magnitude of the eigenvalues that determines 
the modal interference pattern in Eq. (9), but rather the relative separation between 
eigenvalues. Tindle and Guthrie [ 171 have shown that the range at which a bundle 
of energy associated with a mode completes one cycle through the ocean and 
sediment is inversely proportional to the separation between phase velocities. This 
is the first range at which two adjacent modes constructively interfere in the sum of 
Eq. (4). For example, the NRL code predicts mode 188 to have a cycle distance of 
22.48 km while the WKB code predicts a cycle distance of 22.30 km. Although the 

581/66/l-3 
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phase velocity errors are large for these modes, the error in the separation between 
phase velocities is much smaller. Given the agreement between mode amplitudes 
and attenuations, the net effect of the WKB errors results only in a small range 
shift. These errors are significantly small (particularly with respect to errors arising 
from predicting sediment properties in several thousand meters of water) that no 
practical limitations of applicability of technique result here. Further, these errors 
diminish as frequency increases. 

To illustrate the accuracy of the code, the resuls of the modal sums in Eq. (4) for 
the numeric (NRL) and joint numeric-asymptotic (WKB) approaches are presented 
in the form of transmission loss. Figure 4 presents a transmission loss comparison if 
only modes that do not strongly interact with the bottom are included in the sum 
of Eq. (4); this is accomplished by terminating the sum when mode phase velocities 
exceed 1527 m/set. The large fade-outs between peaks indicate that all acoustic 
energy leaks out of the surface channel, a diffractive effect not included in a 
geometrical optics approach. The periodic peaks represent energy that has cycled 
into the deep ocean and returned to the shallow receiver. Good agreement is noted 

Range (km) 

50 100 150 FM0 
I / I I I I I - 

FIG. 4. Comparison of NRL (A) and WKB (B) transmission loss results for propagation of energy 
not interacting strongly with bottom. 
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FIG. 5. Comparison of NRL (A) and WKB (B) transmission loss results if bottom interacting energy 
is included. 

between the two codes in both the shapes and levels of the curves. Figure 5 presents 
a similar comparison, but including modes in Eq. (4) with phase velocities as high 
as 1700 m/set. The effect of including the sediment interacting energy is to till the 
fade-outs of Fig. 3. Again the agreement in the behavior of the two curves is good. 
The only discrepancies exist in the magnitudes of the signal fade-outs which arise 
from two or more bundles of energy arriving at the receiver with opposite phases, 
resulting in a cancellation. To illustrate the efficiency of the asymptotic approach, 
the NRL code took 12 minutes of VAX 1 l/780 CPU time to calculate the quantities 
needed for the modal sum of Eq. (4). The uniform WKB code took 37 seconds, a 
savings of over one order of magnitude. These savings become more meaningful if a 
multiple-frequency pulsed case described in Eq. (1) is considered. If 128 frequencies 
were required, the NRL code would require roughly 1 day of CPU time versus just 
over 1 hour for the WKB code. Given the typical real time to CPU time ratio that 
exists in a multi-user environment, this difference amounts to several runs per day 
versus one run per week. 



34 BRANNAN,FORNEY, ANDHENRICK 

6. SUMMARY AND CONCLUSIONS 

A joint analytic-numeric approach is used to solve the separable wave equation 
in the context of underwater acoustic propagation. The uniform WKB approach is 
used to obtain approximations to the normal modes of the sound channel. The con- 
cept is to use analytical asymptotic approximations where such approximations are 
valid and numerical techniques in other cases. Error estimates for the analytical for- 
mula are derived and utilized to define regions where numerics are necessary. 
Techniques and expressions to match the analytical solution to the numeric 
solutions while satisfying the boundary conditions are also presented. The resulting 
techniques are applicable to the types of sound channels and sediments that arise in 
underwater acoustic propagation. 

A comparison of results obtained from the hybrid approach to those obtained 
from strict numerical calculation is made. It is shown that accurate approximations 
are made to the eigenvalues of modes that are trapped in the water column, but 
that larger errors result for modes that deeply penetrate the sediment. These errors 
result from the high sound speed gradients in the sediment as illustrated in the 
derivation of the error estimates. However, the separation between eigenvalues is 
shown to be less in error and it is argued that this separation is the critical factor in 
determining the modal interference patterns. A comparison of transmission loss for 
the two approaches demonstrates that accurate treatment of diffraction in the water 
column, and the accuracy of predictions of transmission loss for bottom interacting 
energy. The efficiency of the joint analytic-numeric approach is noted by over an 
order of magnitude reduction in run time. 

In summary, this paper documents both the accuracy and efficiency of using 
combined analytic and numeric approaches to solve problems of practical interest. 
Although originally applied to acoustic propagation, such an approach has 
applications in a wide variety of separable physical problems. 
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